131 research outputs found

    Element Distinctness, Frequency Moments, and Sliding Windows

    Full text link
    We derive new time-space tradeoff lower bounds and algorithms for exactly computing statistics of input data, including frequency moments, element distinctness, and order statistics, that are simple to calculate for sorted data. We develop a randomized algorithm for the element distinctness problem whose time T and space S satisfy T in O (n^{3/2}/S^{1/2}), smaller than previous lower bounds for comparison-based algorithms, showing that element distinctness is strictly easier than sorting for randomized branching programs. This algorithm is based on a new time and space efficient algorithm for finding all collisions of a function f from a finite set to itself that are reachable by iterating f from a given set of starting points. We further show that our element distinctness algorithm can be extended at only a polylogarithmic factor cost to solve the element distinctness problem over sliding windows, where the task is to take an input of length 2n-1 and produce an output for each window of length n, giving n outputs in total. In contrast, we show a time-space tradeoff lower bound of T in Omega(n^2/S) for randomized branching programs to compute the number of distinct elements over sliding windows. The same lower bound holds for computing the low-order bit of F_0 and computing any frequency moment F_k, k neq 1. This shows that those frequency moments and the decision problem F_0 mod 2 are strictly harder than element distinctness. We complement this lower bound with a T in O(n^2/S) comparison-based deterministic RAM algorithm for exactly computing F_k over sliding windows, nearly matching both our lower bound for the sliding-window version and the comparison-based lower bounds for the single-window version. We further exhibit a quantum algorithm for F_0 over sliding windows with T in O(n^{3/2}/S^{1/2}). Finally, we consider the computations of order statistics over sliding windows.Comment: arXiv admin note: substantial text overlap with arXiv:1212.437

    Worst-Case Optimal Algorithms for Parallel Query Processing

    Get PDF
    In this paper, we study the communication complexity for the problem of computing a conjunctive query on a large database in a parallel setting with pp servers. In contrast to previous work, where upper and lower bounds on the communication were specified for particular structures of data (either data without skew, or data with specific types of skew), in this work we focus on worst-case analysis of the communication cost. The goal is to find worst-case optimal parallel algorithms, similar to the work of [18] for sequential algorithms. We first show that for a single round we can obtain an optimal worst-case algorithm. The optimal load for a conjunctive query qq when all relations have size equal to MM is O(M/p1/ψ)O(M/p^{1/\psi^*}), where ψ\psi^* is a new query-related quantity called the edge quasi-packing number, which is different from both the edge packing number and edge cover number of the query hypergraph. For multiple rounds, we present algorithms that are optimal for several classes of queries. Finally, we show a surprising connection to the external memory model, which allows us to translate parallel algorithms to external memory algorithms. This technique allows us to recover (within a polylogarithmic factor) several recent results on the I/O complexity for computing join queries, and also obtain optimal algorithms for other classes of queries

    Communication Steps for Parallel Query Processing

    Full text link
    We consider the problem of computing a relational query qq on a large input database of size nn, using a large number pp of servers. The computation is performed in rounds, and each server can receive only O(n/p1ε)O(n/p^{1-\varepsilon}) bits of data, where ε[0,1]\varepsilon \in [0,1] is a parameter that controls replication. We examine how many global communication steps are needed to compute qq. We establish both lower and upper bounds, in two settings. For a single round of communication, we give lower bounds in the strongest possible model, where arbitrary bits may be exchanged; we show that any algorithm requires ε11/τ\varepsilon \geq 1-1/\tau^*, where τ\tau^* is the fractional vertex cover of the hypergraph of qq. We also give an algorithm that matches the lower bound for a specific class of databases. For multiple rounds of communication, we present lower bounds in a model where routing decisions for a tuple are tuple-based. We show that for the class of tree-like queries there exists a tradeoff between the number of rounds and the space exponent ε\varepsilon. The lower bounds for multiple rounds are the first of their kind. Our results also imply that transitive closure cannot be computed in O(1) rounds of communication

    Model Counting of Query Expressions: Limitations of Propositional Methods

    Full text link
    Query evaluation in tuple-independent probabilistic databases is the problem of computing the probability of an answer to a query given independent probabilities of the individual tuples in a database instance. There are two main approaches to this problem: (1) in `grounded inference' one first obtains the lineage for the query and database instance as a Boolean formula, then performs weighted model counting on the lineage (i.e., computes the probability of the lineage given probabilities of its independent Boolean variables); (2) in methods known as `lifted inference' or `extensional query evaluation', one exploits the high-level structure of the query as a first-order formula. Although it is widely believed that lifted inference is strictly more powerful than grounded inference on the lineage alone, no formal separation has previously been shown for query evaluation. In this paper we show such a formal separation for the first time. We exhibit a class of queries for which model counting can be done in polynomial time using extensional query evaluation, whereas the algorithms used in state-of-the-art exact model counters on their lineages provably require exponential time. Our lower bounds on the running times of these exact model counters follow from new exponential size lower bounds on the kinds of d-DNNF representations of the lineages that these model counters (either explicitly or implicitly) produce. Though some of these queries have been studied before, no non-trivial lower bounds on the sizes of these representations for these queries were previously known.Comment: To appear in International Conference on Database Theory (ICDT) 201

    Nondeterminism and an abstract formulation of Ne\v{c}iporuk's lower bound method

    Get PDF
    A formulation of "Ne\v{c}iporuk's lower bound method" slightly more inclusive than the usual complexity-measure-specific formulation is presented. Using this general formulation, limitations to lower bounds achievable by the method are obtained for several computation models, such as branching programs and Boolean formulas having access to a sublinear number of nondeterministic bits. In particular, it is shown that any lower bound achievable by the method of Ne\v{c}iporuk for the size of nondeterministic and parity branching programs is at most O(n3/2/logn)O(n^{3/2}/\log n)
    corecore